482 research outputs found

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    Performance of the CMS muon trigger system in proton-proton collisions at √s = 13 TeV

    Get PDF
    The muon trigger system of the CMS experiment uses a combination of hardware and software to identify events containing a muon. During Run 2 (covering 2015-2018) the LHC achieved instantaneous luminosities as high as 2 × 10 cm s while delivering proton-proton collisions at √s = 13 TeV. The challenge for the trigger system of the CMS experiment is to reduce the registered event rate from about 40 MHz to about 1 kHz. Significant improvements important for the success of the CMS physics program have been made to the muon trigger system via improved muon reconstruction and identification algorithms since the end of Run 1 and throughout the Run 2 data-taking period. The new algorithms maintain the acceptance of the muon triggers at the same or even lower rate throughout the data-taking period despite the increasing number of additional proton-proton interactions in each LHC bunch crossing. In this paper, the algorithms used in 2015 and 2016 and their improvements throughout 2017 and 2018 are described. Measurements of the CMS muon trigger performance for this data-taking period are presented, including efficiencies, transverse momentum resolution, trigger rates, and the purity of the selected muon sample. This paper focuses on the single- and double-muon triggers with the lowest sustainable transverse momentum thresholds used by CMS. The efficiency is measured in a transverse momentum range from 8 to several hundred GeV

    Search for a charged Higgs boson decaying into a heavy neutral Higgs boson and a W boson in proton-proton collisions at s=\sqrt{s} = 13 TeV

    No full text
    A search for a charged Higgs boson H~±{\mathrm{\tilde{H}^{\pm}}} decaying into a heavy neutral Higgs boson H and a W boson is presented. The analysis targets the H decay into a pair of tau leptons with at least one of them decaying hadronically and with an additional electron or muon present in the event. The search is based on proton-proton collision data recorded by the CMS experiment during 2016-2018 at s=\sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. The data are consistent with standard model background expectations. Upper limits at 95% confidence level are set on the product of the cross section and branching fraction for an H~±{\mathrm{\tilde{H}^{\pm}}} in the mass range of 300-700 GeV, assuming an H with a mass of 200 GeV. The observed limits range from 0.085 pb for an H~±{\mathrm{\tilde{H}^{\pm}}} mass of 300 GeV to 0.019 pb for a mass of 700 GeV. These are the first limits on H~±{\mathrm{\tilde{H}^{\pm}}} production in the H~±HW±{\mathrm{\tilde{H}^{\pm}}} \to \mathrm{H} \mathrm{W^{\pm}} decay channel at the LHC.A search for a charged Higgs boson H±^{±} decaying into a heavy neutral Higgs boson H and a W boson is presented. The analysis targets the H decay into a pair of tau leptons with at least one of them decaying hadronically and with an additional electron or muon present in the event. The search is based on proton-proton collision data recorded by the CMS experiment during 2016–2018 at s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{−1}. The data are consistent with standard model background expectations. Upper limits at 95% confidence level are set on the product of the cross section and branching fraction for an H±^{±} in the mass range of 300–700 GeV, assuming an H with a mass of 200 GeV. The observed limits range from 0.085 pb for an H±^{±} mass of 300 Ge V to 0.019 pb for a mass of 700 GeV. These are the first limits on H±^{±} production in the H±^{±}→ HW±^{±} decay channel at the LHC.[graphic not available: see fulltext]A search for a charged Higgs boson H±^\pm decaying into a heavy neutral Higgs boson H and a W boson is presented. The analysis targets the H decay into a pair of tau leptons with at least one of them decaying hadronically and with an additional electron or muon present in the event. The search is based on proton-proton collision data recorded by the CMS experiment during 2016-2018 at s\sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. The data are consistent with standard model background expectations. Upper limits at 95% confidence level are set on the product of the cross section and branching fraction for an H±^\pm in the mass range of 300-700 GeV, assuming an H with a mass of 200 GeV. The observed limits range from 0.085 pb for an H±^\pm mass of 300 GeV to 0.019 pb for a mass of 700 GeV. These are the first limits on H±^\pm production in the H±^\pm \to HW±^\pm decay channel at the LHC

    Search for pair production of vector-like quarks in leptonic final states in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    A search is presented for vector-like T and B quark-antiquark pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV. Data were collected by the CMS experiment at the CERN LHC in 2016–2018, with an integrated luminosity of 138 fb1^{−1}. Events are separated into single-lepton, same-sign charge dilepton, and multi-lepton channels. In the analysis of the single-lepton channel a multilayer neural network and jet identification techniques are employed to select signal events, while the same-sign dilepton and multilepton channels rely on the high-energy signature of the signal to distinguish it from standard model backgrounds. The data are consistent with standard model background predictions, and the production of vector-like quark pairs is excluded at 95% confidence level for T quark masses up to 1.54 TeV and B quark masses up to 1.56 TeV, depending on the branching fractions assumed, with maximal sensitivity to decay modes that include multiple top quarks. The limits obtained in this search are the strongest limits to date for TT \textrm{T}\overline{\textrm{T}} production, excluding masses below 1.48 TeV for all decays to third generation quarks, and are the strongest limits to date for BB \textrm{B}\overline{\textrm{B}} production with B quark decays to tW.[graphic not available: see fulltext

    Search for CPCP violation in ttH and tH production in multilepton channels in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe charge-parity (CP) structure of the Yukawa interaction between the Higgs (H) boson and the top quark is measured in a data sample enriched in the tt \overline{\textrm{t}} H and tH associated production, using 138 fb1^{−1} of data collected in proton-proton collisions at s \sqrt{s} = 13 TeV by the CMS experiment at the CERN LHC. The study targets events where the H boson decays via H → WW or H → ττ and the top quarks decay via t → Wb: the W bosons decay either leptonically or hadronically, and final states characterized by the presence of at least two leptons are studied. Machine learning techniques are applied to these final states to enhance the separation of CP -even from CP -odd scenarios. Two-dimensional confidence regions are set on κt_{t} and κt \overset{\sim }{\kappa } _{t}, which are respectively defined as the CP -even and CP -odd top-Higgs Yukawa coupling modifiers. No significant fractional CP -odd contributions, parameterized by the quantity |fCPHtt {f}_{CP}^{\textrm{Htt}} | are observed; the parameter is determined to be |fCPHtt {f}_{CP}^{\textrm{Htt}} | = 0.59 with an interval of (0.24, 0.81) at 68% confidence level. The results are combined with previous results covering the H → ZZ and H → γγ decay modes, yielding two- and one-dimensional confidence regions on κt_{t} and κt \overset{\sim }{\kappa } _{t}, while |fCPHtt {f}_{CP}^{\textrm{Htt}} | is determined to be |fCPHtt {f}_{CP}^{\textrm{Htt}} | = 0.28 with an interval of |fCPHtt {f}_{CP}^{\textrm{Htt}} | < 0.55 at 68% confidence level, in agreement with the standard model CP -even prediction of |fCPHtt {f}_{CP}^{\textrm{Htt}} | = 0.[graphic not available: see fulltext

    Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at s \sqrt{s} = 13 TeV

    No full text
    The measurements of the inclusive and differential fiducial cross sections of the Higgs boson decaying to a pair of photons are presented. The analysis is performed using proton-proton collisions data recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 137 fb1^{−1}. The inclusive fiducial cross section is measured to be σfid=73.45.3+5.4(stat)2.2+2.4(syst) {\sigma}_{\textrm{fid}}={73.4}_{-5.3}^{+5.4}{\left(\textrm{stat}\right)}_{-2.2}^{+2.4}\left(\textrm{syst}\right) fb, in agreement with the standard model expectation of 75.4 ± 4.1 fb. The measurements are also performed in fiducial regions targeting different production modes and as function of several observables describing the diphoton system, the number of additional jets present in the event, and other kinematic observables. Two double differential measurements are performed. No significant deviations from the standard model expectations are observed.[graphic not available: see fulltext

    Search for Higgs Boson and Observation of Z Boson through their Decay into a Charm Quark-Antiquark Pair in Boosted Topologies in Proton-Proton Collisions at s\sqrt{s} =13 TeV

    No full text
    A search for the standard model (SM) Higgs boson (H) produced with transverse momentum greater than 450 GeV and decaying to a charm quark-antiquark (ccˉ\mathrm{c\bar{c}}) pair is presented. The search is performed using proton-proton collision data collected at s\sqrt{s} = 13 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb1^{-1}. Boosted H \toccˉ\mathrm{c\bar{c}} decay products are reconstructed as a single large-radius jet and identified using a deep neural network charm tagging technique. The method is validated by measuring the Z \toccˉ\mathrm{c\bar{c}} decay process, which is observed in association with jets at high pTp_\mathrm{T} for the first time with a signal strength of 1.00 0.14+0.17_{-0.14}^{+0.17} (syst) ±\pm 0.08 (theo) ±\pm 0.06 (stat), defined as the ratio of the observed process rate to the standard model expectation. The observed (expected) upper limit on σ\sigma(H) B\mathcal{B}(H \toccˉ\mathrm{c\bar{c}}) is set at 47 (39) times the SM prediction at 95% confidence level
    corecore